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We report the results of an investigation of the weakly nonlinear evolution of a triad 
of waves, each slightly amplified on a linear basis, that are superimposed on a tanhy 
mixing layer. The triad consists of a plane wave and a pair of oblique modes that act 
as a subharmonic of order 1/2. The oblique modes are inclined at approximately k 60" 
to the mean flow direction and because the resonance conditions are satisfied exactly 
the analysis is entirely self-consistent as an asymptotic theory. The nonlinearity first 
occurs within the critical layer and the initial interaction is of the parametric resonance 
type. This produces faster than exponential growth of the oblique waves, behaviour 
observed recently in the experiments of Corke & Kusek (1993). The critical-layer 
dynamics lead subsequently to coupled integro-differential equations governing the 
amplitude evolution and, as first shown in related work by Goldstein & Lee (1992) on 
boundary layers in an adverse pressure gradient, these equations develop singularities 
in a finite time. 

1. Introduction 
Experiments on the transition to turbulence of incompressible mixing layers that 

involve external forcing show that this process occurs in several stages. When the 
forcing is two-dimensional, the initial instability is primarily two-dimensional. This 
observation is consistent with linear stability theory, where plane waves propagating 
in the mean flow direction are known to have the largest growth rates. Nonlinearity 
results in eventual saturation of the most amplified plane wave and, as it tends toward 
equilibration, a subharmonic wave having one-half the frequency of the dominant 
initial disturbance makes its appearance (as do higher harmonics). This intriguing 
phenomenon manifests itself in smoke visualization experiments as vortex pairing (see, 
e.g. Freymuth 1966) and is also apparent from hot-wire signals (figure 8 in Sat0 1959 
provides a striking example). 

The survey article by Ho & Huerre (1984) reviews numerous experiments, several 
theoretical descriptions and discusses the technological implications of vortex pairing. 
The same article also cites some of the first observations of three-dimensional 
structures which often take the form of counter-rotating pairs of vortices whose axes 
are in the direction of the mean flow. Considerable experimental work has been carried 
out more recently on these three-dimensional structures. Whereas pairing was long 
believed to be essentially a two-dimensional process, the more recent studies, as 
discussed by Dallard & Browand (1993), indicate that pairing is three-dimensional. 
This seems to be true for both laminar and turbulent mixing layers whether or not the 
flow is forced. Of particular interest relative to the present investigation are the 
experiments reported by Nygaard & Glezer (1991) in which it was found that 
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streamwise vortices could be generated that sometimes formed upstream of the initial 
pairing of the primary spanwise vortices. The sequence of events during transition, in 
other words, is quite sensitive to initial conditions, particularly the nature of any 
forcing upstream of the initial instability. The latter article also includes an extensive 
review of the more recent experiments on three-dimensional aspects of mixing-layer 
transition. 

The present paper is concerned with the analysis of resonant interactions believed to 
play a significant role in the phenomena described above. An important contribution 
toward that end is contained in ideas first put forward by Kelly (1967) who showed that 
certain features observed in the early stages of vortex pairing could be modelled (and 
in some cases predicted) by studying the resonant interaction of two disturbances 
whose wavenumbers are in the ratio 2: 1. The shorter wave in Kelly’s analysis was 
taken to be periodic in space and time (i.e. neutral) whereas the long wave, termed a 
subharmonic, had, initially, a much smaller amplitude. Its instability, due to both 
linear and parametric resonance effects, corresponds to the onset of pairing. 
Subsequently, Patnaik, Sherman & Corcos (1976) performed numerical simulations of 
instability in a stratified mixing layer and showed that the entire pairing process could 
be modelled in the temporal case by following the evolution of two interacting Fourier 
modes with wavenumbers in the same 2: 1 ratio. 

Kelly, however, pointed out a number of discrepancies between his subharmonic 
resonance model and the experimental events it is intended to describe. For example, 
the dispersive character of spatially growing plane waves detunes the resonance to the 
point that it would not be operational in a situation where (i) the shear flow is of 
mixing-layer form and truly parallel; and (ii) the fundamental (shorter wave) 
disturbance is the fastest growing wave of linear theory. Yet, despite this and other 
difficulties, there is sufficient agreement between theory and experiment to leave little 
doubt that the basic mechanism is correct. We will present below an analysis that 
retains this essential mechanism, but puts the mathematics on a more rational footing 
by utilizing a pair of oblique modes as the subharmonic. First, however, we comment 
briefly on two extensions of the subharmonic resonance approach that have appeared 
since the original work by Kelly. 

First, Pierrehumbert & Widnall(l982) have studied the instability of Stuart vortices 
to perturbations including a spanwise component. Their analysis is similar to that of 
Kelly (and different from our own) in that the subharmonic is viewed as a secondary 
instability of a flow that is spatially periodic in the flow direction. The approach of 
Monkewitz (1988), on the other hand, allows both the fundamental and subharmonic 
perturbations to be of the same order of magnitude. The fundamental is taken 
essentially to be neutral and it is found that the exponential amplification of the 
subharmonic is enhanced owing to the resonance. The effect of a slight detuning of the 
frequencies is also taken into account and discussed relative to experimental 
observations. Because of the exponential amplification of the subharmonic and the 
presence of a ‘detuning parameter’ which cannot vanish in the spatial case if the 
interacting modes are both two-dimensional, the perturbation expansion employed by 
Monkewitz is restricted to only a limited distance in the flow direction. However, while 
briefly considering a subharmonic comprising a pair of slightly oblique modes, he notes 
that for a particular spanwise wavenumber (estimated to be 0.35) the detuning 
parameter vanishes and so the resonance would be ‘enhanced’. 

The foregoing observation is directly related to our own approach (although it will 
be seen that the special spanwise wavenumber does not correspond to an amplified 
mode, as assumed by Monkewitz, and consequently is more than double the above 
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estimate). We consider as our basic state a tanhy shear layer upon which is 
superimposed a resonant triad of neutral modes comprising a plane wave and a pair 
of oblique modes, each inclined at 60" with respect to the mean flow direction. Because 
the resonance conditions, as will be shown in $2, are satisfied exactly our solution will 
remain valid in the limit as the small parameter in the analysis goes to zero. Unlike 
previous analyses of the phenomenon described above, our results will therefore be 
correct in a strict asymptotic sense. Experience suggests that when this is the case, there 
is reason to hope that the results will be qualitatively correct even when we are 
considering linearly amplified waves and the perturbation is not particularly small. 

As the basic small parameter in the analysis, it is most appropriate to choose the 
departure of the prescribed wavenumber a of the plane wave from its neutral value of 
1. We, in effect, will do this but for convenience in interpreting the ha1 results it is 
helpful to introduce an O( 1) constant which we denote a, and write 

a = 1 -e1I3a1, a1 > 0, 
where E is an amplitude parameter. It is necessary that 1 -a be positive and, preferably, 
not too small because we will employ a non-equilibrium critical layer in which the flow 
evolves on a relatively fast timescale, namely, T = ~ ~ / ~ t  (or X = E ' / ~ x  in the spatial case). 
This means that our results are more applicable to the high-Reynolds-number 
experiments of Nygaard & Glezer than to experiments conducted at comparatively low 
Reynolds numbers, such as those reported by Lasheras, Cho & Maxworthy (1986). A 
viscous critical layer would be more appropriate in the latter case; however, as 
discussed by Churilov & Shukhman (1987) in some detail, consistency would then 
require a proper accounting of the basic flow's diffusion. 

For a tanh y shear layer, Lin's perturbation formula can be utilized to estimate the 
linear amplification rate for a near-neutral disturbance. Using this estimate, Churilov 
& Shukhman note that one condition for an inviscid non-equilibrium critical layer to 
be appropriate is satisfaction of the inequality Re-'/' 4 2( 1 - a)/n, where Re-113 is the 
viscous critical-layer thickness and Re is the Reynolds number. In order that non- 
equilibrium effects dominate over nonlinearity in the critical layer, the analogous 
condition is ell2 4 2( 1 - a)/n. Satisfaction of these inequalities is crucial because, as is 
particularly true in the non-equilibrium approach, the critical-layer dynamics govern 
the evolution of the flow well into the nonlinear rtgime. Extension of these arguments 
to the case of perturbations amplifying in both space and time can be found in # 5  of 
Huerre (1987). For a review of various critical-layer theories, especially for nonlinear 
and viscous critical layers, the reader is referred to the survey article by Maslowe 
(1986). 

A brief explanation for the ordering of the perturbation amplitudes is called for 
because we will choose the asymptotic scaling of the oblique modes to be slightly larger 
than the plane wave, O(E) as compared with O ( E ~ / ~ ) .  This choice, unless there is strong 
forcing of the oblique modes, is inappropriate for the initial stages of the interaction. 
However, as discussed in a recent survey article by Goldstein (1994), the sort of analysis 
presented here describes an intermediate stage of the evolution in which the oblique 
modes have now grown larger than the plane wave owing to a parametric resonance 
which seems to occur in a number of shear flows. For a tanhy shear layer, analysis of 
the earlier stage in which all modes are of O(s) was found by Mallier & Maslowe (1994) 
to lead to the amplitude equations 
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and (1.3) 

where A,, and A,, are the amplitudes of the plane and oblique waves, respectively, and 
7 = el/lt. (The subscript assignments are explained in $2 and a, is related to a as in 
(l.l), but with 

Comparing (1.2) and (1.3) with conventional equations of resonant interaction 
theory (see e.g. Craik 1986) we would expect to find a nonlinear term involving an 
integral of A:, on the right-hand side of (1.2). The coefficient of that term turns out to 
be zero here, as well as in the related studies discussed in the next paragraph. As a 
result, the plane wave continues to amplify as in linear theory, whereas the solution of 
(1.3) predicts very rapid (exponential of an exponential) amplification of the oblique 
waves for T B 1. Experimental observation of such behaviour in the thin mixing layer 
at the edge of a circular jet was reported very recently by Corke & Kusek (1993; see 
figures 6 and 12). While our theory differs from the approach of Monkewitz and Kelly 
in that there is no threshold amplitude for A,,, it still must be at least of the same order 
of magnitude as the oblique modes in order to appear in (1.3) and produce such rapid 
amplification of the latter. 

Clearly, at some time beyond the parametric resonance stage, t - O(E1l4), there 
must be a so-called back-reaction of the oblique waves on the plane wave and the 
following stage will be governed by coupled evolution equations for A,, and All. 
Goldstein & Lee (1992) have identified a distinguished limit that leads to evolution 
equations that are strongly coupled in their investigation of long-wave interactions in 
an adverse-pressure-gradient boundary layer. Because in the present study the relevant 
wavenumbers are O(l), our scaling differs from that of Goldstein & Lee, but is identical 
with the analysis by Wu (1992) of the Stokes layer. It will be seen that our treatment 
of the free shear layer is simplified in comparison with the aforementioned examples 
thanks to the availability of a closed-form neutral solution for the tanhy mixing layer. 
We are, as a result, able to determine explicitly the coefficients of all terms in our 
amplitude equations without the need for numerical computation or long-wave 
expansions. The choice of scales, incidentally, is subtle and depends, for example, on 
the order at which the first velocity jump across the critical layer occurs. 

The end result of our analysis will be two fully coupled nonlinear integro-differential 
equations for the amplitudes, each of which develops a singularity in a finite time (or 
distance). A similar singularity appears even without a plane wave as was shown by 
Goldstein & Choi (1989) who considered a disturbance of two oblique waves on a 
mixing-layer profile. The actual significance of this ‘explosive instability’ remains to be 
established and is a subject of current research. Finally, we note that both Goldstein 
& Lee (1992) and Wu (1992) have shown that the parametric resonant stage described 
by (1.2) and (1.3) is recovered from the fully coupled equations in the limit A,, -4 A20, 
so the present scaling appears to be more general. 

Before giving the derivation of these equations, we point out another significant 
feature of the analysis, namely that the interaction of the oblique waves in the critical 
layer generates a mean streamwise vortex motion outside the critical layer. The velocity 
component in the flow direction turns out to be as large, i.e. O(e), as the oblique waves 
that induce it, whereas the other two components are slightly smaller, specifically 

In the following section, we present the basic perturbation expansion that is 
substituted into the Euler equations to describe the motion outside the critical layer. 
Then, in 93, the analysis of the non-equilibrium critical layer is presented. The problem 

in place of ell3.) 

0(€4/3). 
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is formulated initially using the temporal theory because, for reasons of economy, most 
numerical simulations are done that way. In particular, some comparisons will be made 
in $4 with the recent Navier-Stokes computations of Schoppe, Hussain & Metcalfe 
(1994) which, in some important respects, agree with our theory. Finally, in the same 
section, the amplitude equations for spatial evolution are discussed relative to 
experimental observations. 

2. Formulation and outer expansion 
We consider the stability of the dimensionless mixing-layer profile 

~ ( y )  = u, + tanhy (2.1) 

by adding a small perturbation of O(E),  where E 4 1 is a dimensionless amplitude 
parameter. The equations of motion can be written 

37 - + ( q . V ) q  = - v p  
at 

and v*q=o ,  (2-3) 

where we have supposed the fluid to be inviscid and incompressible. The temporal 
stability problem is independent of u,, the mean velocity in (2.1), so we will set 
u, = 0 until later in the paper when we discuss the spatial case. 

The velocity components q = (a+ eu, my E W )  and the perturbation pressure ep are 

(2.4) 

(2-5) 

(2.6) 

(2-7) 

In the linearized problem, perturbations proportional to exp [i(ax +/3z - uct)] are 
considered and the y-dependent part of dl), which we denote Dl, satisfies the Rayleigh 

expanded as follows : = u(l) + e1/3u(2) + e2/3u(3) + . . . , 
u = ~ ( 1 )  + e 1 / 3 ~ ( 2 )  + e 2 / 3 ~ ( 3 )  + . , . , 
w = w(1) + El/SW(2) + 62/3w(3) + . . . 

and = p ( l )  + E1/3p(2 )  + e2/3p(3)  + . . . . 

equation 

where z = (u2 + pZ)l /z.  
For the mixing-layer profile P = tanhy, Curle (1956) has found the following neutral 

solution of the eigenvalue problem consisting of (2.8) and the boundary conditions that 
~ ~ + O a s y - + & m :  

This solution is employed in our lowest-order disturbance which is a subharmonic of 
the plane wave. It comprises two oblique modes of equal amplitude, equally inclined 
to the mean flow, so that in the spanwise direction we have a standing wave. The 
vertical velocity at lowest order is accordingly of the form 

Ul = sechy, d = a2+p2 = 1 and c = 0. (2.9) 

Dm = { A , l ( T ) e i z / 2 + A ~ l  e-iz~2}>l(y)2cos/30z, (2.10) 

where Po = 43/2,  Dl is given by (2.9) and T = &*t is a slow timescale, i.e. the method 
of multiple scales will be employed. The factor of 2 is introduced because it will simplify 
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the subsequent development to utilize complex exponentials along with the identity 
2 cos j3, z = exp (ij3, z) + exp (- ij3, z). 

A triad of neutral modes satisfying exactly the conditions for resonance could be 
chosen according to (2.9) by including a plane wave with wavenumber a = 1. However, 
as discussed in 0 1, we will depart slightly from this scheme by setting a < 1 by an 
amount O(e113), as indicated by (l.l), so that the plane wave is amplified on a linear 
basis and the critical layer is of the non-equilibrium type. A second departure, as 
discussed in 0 1, is that the plane wave has an amplitude smaller by a factor €'I3, this 
scaling being appropriate to describe the fully coupled stage of evolution. With regard 
to the wavenumbers for the pair of oblique modes, in most of the paper we will suppose 
that j3/a = 43/2,  where a is one-half the plane wave a defined by (1.1); however, the 
more general situation where the angle of inclination of the oblique waves can be less 
than 60" will be discussed in connection with the spatial case. 

An observation that we make, in passing, relative to (2.9) is that because of the non- 
dispersiveness of the solution, it exhibits the phenomenon of 'nth harmonic resonance '. 
This term originates from studies of capillary-gravity waves (Wilton's ripples) and, to 
describe our approach, it is arguably more appropriate than 'subharmonic resonance'. 
However, we retain the latter terminology to facilitate comparison with previous 
articles on mixing layers. In any case, the solution (2.9) is resonant for a = l/n and, 
consequently, an infinite number of resonant combinations are possible; however, the 
fastest timescale is associated with n = 2, the case we analyse, and this resonance 
should therefore be the most observable. None the less, the experiments of Ho & 
Huang (1982) demonstrate clearly that forcing at an appropriate frequency (see their 
figure 2) can generate some of the higher resonances. 

Returning now to the present analysis, the procedure for determining the remaining 
terms in (2.4H2.7) will be outlined only briefly because the details in many respects 
parallel the investigation of Benney (1961). Both u(') and dl) contain terms having 
first-order poles at the critical pointy = 0. A significant difference, however, due to our 
use of a non-equilibrium critical layer rather than the steady viscous critical layer 
employed by Benney is that u(I) contains an additional term and is of the form 

u(l) = ( A , , i ~ , ( y ) e ~ ~ ~ ~ + A ~ , ~ e ~ * ~ ~ ~ ) 2 c o s ~ , z + 2 u , , ( y ,  T)cos2,8,z, (2.11) 
where iil contains a term proportional to cosechy (see Benney, $4) and the second term 
in (2.1 1) is a spanwise mean flow component induced by the critical layer. The need for 
such a term, representing a streamwise vortex motion, was first established by 
Goldstein & Choi (1989). For the tanhy mixing layer, 

u , , = + 1 / 3 C ~ * e ~ ~ 3 y ~ e c h y ,  (2.12) 

where f denotes above and below the critical layer. 
The presence of singular terms such as v1 generates discontinuities in certain higher- 

order velocity components and these must be smoothed out by the critical-layer 
solution. Although the general form of the amplitude equation is determined by the 
critical layer, the values of coefficients appearing in those equations must be 
determined by matching to the outer expansion. 

Returning now to the expansions (2.4H2.7), the O(e1I3) terms include the plane wave, 
and u- and v-components of the mean streamwise vortex motion and perturbations to 
the oblique waves. Beginning with the latter, and introducing the notation v&) to mean 
the term at 0(dn-l)13) containing the factor exp {i(lx+ 4 3  mz)/2), we find that the 
quantity u s )  satisfies a non-homogeneous Rayleigh equation which can be written 

02) = -2al A,,sechy-4iA;,seCh2ycosechy, (2.13) 
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where is the Rayleigh operator in (2.8) with cz = 1 and al, as defined by (l.l), 
indicates departure from the neutral wavenumber. Because both homogeneous 
solutions are known in closed form, the method of variation of parameters can be used 
to write the general solution of (2.13) as 

oii) = Ci:) sech y + Dg) * (y  sech y + sinh y )  - a, A,, cosh y 

y,cosech2y,dyl-(ysechy+sinhy)log(tanh[y[) . (2.14) 1 
Imposing the homogeneous boundary conditions as y + & cx) shows that there is a 
jump in I)!:) which is related to the amplitude of the oblique waves by 

(2.15) 

Equations (2.2) and (2.3) can now be used to solve for ug), WE) and pi:). 
As was the case with the lowest-order oblique modes (2. lo), the lowest-order plane 

wave employs the neutral solution given by (2.9) and the vertical velocity due to this 
term is therefore 

ug) = (A,,(T) eiz + A:, e-iZ} ~ , (y ) .  (2.16) 

At O(e2l3) in the expansions (2.4>-(2.7), we need only calculate the perturbation to 
the plane wave, and we find that the quantity ug)  obeys an equation similar to (2.13) 
for ui;), namely 

(2.17) ug) = - 2a, A,, sechy- 2i A;, sech2ycosechy, 

which has a solution similar in form to (2.14), but with Cii)* and DK)* replaced by 
Cg)* and DG)*, respectively, and A,, and A;,  replaced by A,, and :A:,. Imposing the 
homogeneous boundary conditions as y +- & m leads to a jump in I)::) given by 

(2.18) 

It will be seen that matching the jumps in (2.15) and (2.18) to the critical-layer 
solution derived in the following section will lead to the amplitude equations governing 
the temporal evolution of A,, and A,,. Before continuing, however, we will note one 
procedural difference compared with Hickernell (1984) and other papers employing 
non-equilibrium critical layers. Because an analytical solution was not available for the 
outer problem, the jump conditions in these papers were derived from a generalization 
of the usual adjoint orthogonality condition in which it is implicit that an outer 
solution can be found satisfying the boundary conditions. Here, on the other hand, we 
employ the procedure described in Benney & Maslowe (1975, $3) and actually find the 
outer solution. The two procedures should lead to the same result for the amplitude 
equations. 

3. Critical-layer analysis 
To obtain evolution equations for A,, and All,  we shall now pose an inner expansion 

in the critical layer, where the outer expansion becomes disordered, in order to obtain 
expressions for the jumps. To this end, we introduce the inner variables Y = e-'l3y, 
U = e-1/3iZ+e2/3u, V = e1/3u, W = 2I3w and P = e-lI3p inside the critical layer, where it 
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should be recalled that E is the order of magnitude of the oblique wave disturbance in 
the outer expansion, so that the governing equations become 

(3.1) I U T  + uu, + vu, + WU, + ~ 2 / 3 P x  = 0, 

VT+ uv,+ vv,+ W E +  Py = 0, 

WT + UW, + vwy + ww, + 2 / 3 4  = 0, 

u,+ v,+ w, = 0. 

The form of the outer solution written in the inner variables suggests that the inner 
expansion is of the form 

I u = Y + €"3U1 + F3U2 + su3 + . . . , 
v =  € ' / 3 K + 8 3 y 2 + E V 3 + . . .  , 
w = €113 w, + 
P = €-1/3P-' +Po + €1/3P1 + €2/3Pz + . . . . 

w, + 6 w, + . . . , 

We shall see that because of the scalings chosen in the outer expansion, the oblique 
waves will appear at an earlier order, namely at O ( E ' / ~ )  in the inner expansion 
compared with the plane wave, which h s t  appears at O(e2l3). Substituting this 
expansion into the governing equations, collecting powers of B and grouping terms with 
the same x- and z-dependence, we arrive at a series of equations of the form 

which have solutions of the form 

We will also need to calculate the jumps in several quantities across the critical layer 
with, for example, the jump in + given by j?m#YdY; when we come to do this, it 
should be recalled from the definition of the Fourier transform that, for real a + 0, 

eiaYTdY = --6(T). 2lt 
la1 

(3.5) 

For the inner expansion, we shall use the notation q:A to mean the term at 
multiplying exp [ia(lx + m d 3  z)/2] ; in what follows, we will give only the terms 
corresponding to non-negative 1 and m, with the remaining terms following from 
symmetry: for example, U!-2i,o = Uc,Z*. Additionally, only those terms necessary to 
evaluate jumps will be determined. 

3.1 O(E' /~ )  terms 
At this order, we find that the only terms present represent the oblique waves, with vi = A,, and 
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with WA) = - u<,"/2/3 and the relevant pressure terms given by 6;l) = iA11/2, Pi!) = 
iCE)&/2 and 

11 = -+iAll p - A i l  Y+6iA:,-+ial C$i)* +LiC(3)* 2 11 -2J)(2)*'. 11 (3.7) 

Since PA) and PE) must be continuous, this tells us that CE)+ = Ci:)- = CE) and c$;)+ + 4 i p + '  = ~ ( 3 ) -  + 4 i ~ ) ~ ) - ' .  
11 11 

3.2. O(~Z' /~)  terms 
At this order, it is necessary to calculate several terms. The two-dimensional wave is 
composed of both the original two-dimensional wave and the interaction of the oblique 
waves so that Vi) satisfies 

(3.8) c i , Y T + i Y V $ y  = -4q i )  U:),,+2iAl1 q&y, 
which has a solution 

x All( T,) All( TJ eiY(To+T1-2T)/2 d T, d + A20( T). (3.9) 

The streamwise component Uc,"d = i ci, and the pressure terms are given by Pg) = 
iA,,,Pg) = and 

T (&- T,)2A11(T,) All(T,)eiY(Tp+Ti-2T)/2dT 0 1  d T  

- YA;,+$z, PA2,+H(22d(T>. (3.10) 

Since P!!) must be continuous, this tells us that Cg)+ = C(2)- 20 = Cit). For the mean 
flow terms, we find that vi = W,zd = 0, Pz = -4(A11(T)12, and 

(3.1 1) 
which has a solution 

+ 3 I, J -m (T,+ ~ - 2 2 ~ 4  

UA), T = -2A:l Uc), y - 2A11 UA),*y, 

T u(2) 00 = 2p+- 3 jiT ( T , - T , ) A ~ l ( T , ) A l l ( T , ) e i Y ~ T ~ - T ~ ~ ~ 2 d & d T , .  (3.12) 
4 -m -m 

For the oblique waves, it develops that q:) = - a1 All  + CE) and 

vc,zi:, + fi Y p: = - qt) -ti (P:",' - a1 Pfi)) + fia, YUi',', (3.13) 

which has a solution 

T 
Ufi) = -- I ((T, - T )  a1 A;,(T,) + C:)(&)) eiy(To-T)/2 d T  0 (3.14) 

4 -m 

and also Wli) = - q:)/d3, with the pressure term given by 
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For the exp [ia(x+ 4 3  z)] terms, we find that v',",' = 0, Pi:) = A:l, and that 

which has a solution 
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Uj?&+iYL1(222) = -All  q i , y ,  (3.16) 

with w(,Z,, = -V:)/43. There is also a cross-flow component, composed of 
exp ( i43  az) terms which generates the second term in (2.11) in the outer expansion, 
for which we find that 

Gi), YT = 21 q','l2 - iATl qt), + iAll q;),,*y, (3.18) 

which has a solution 

u'2' = - p - A *  u"' 
02, T 02 11 1 1 , Y - A l l  w,$, 

which has a solution 
(3.20) 

=21T r1 3T2-2TT,+Ti-4TT,+2T: 

8 -m -w T-T, 
x (AT1(T,)All(&) eiY(T~-Ti)/2+A:l(T,)Al,(T,) eiY(-To+T I)/') dqdT,  (3.21) 

with the pressure terms given by Pi:) = Cg)*' and 

+ H',2,'(T). (3.22) 

H',2,', and MA) are functions which do not need to be determined. We note that there 
is a non-zero jump in G:) across the critical layer, 

Since P&) must be continuous, this tells us that Cg)+' = C&)-'. In the above, 

c" V(') 02,Y dY = 9 c' r' (A,l(T,)(2dT,dT,, (3.23) 
J -w L J-m J-m 

and it is this jump which necessitates the presence in the outer expansion of the cross- 
stream terms such as the second term in (2.1 1). 

3.3. O(E) terms 
It is at this order that we shall evaluate the jump in the oblique waves. From the outer 
expansion, we know that 
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111 

(3.25) 

where the forcing term .Fg) is given in the Appendix, so that 

q:, + d3 e:, + 2iA11 

= 2Ugi tYgyy+2ug;y u',"d 

and the kernels e; are given in the Appendix. The term 2 q:) G;), y y  + 2 G:yyy U!!) is 
separated from the remainder of the expression because this greatly simplifies the 
evaluation of the jump in (G;) + d3 MA) + 2iA11 Y) across the critical layer. This jump 
is 

and hence the amplitude equation for the oblique waves is 

dA11 alAl 
d T  x 

It is also necessary to calculate U!$) and W;). From the z-momentum equation, we 

MA), + :i Y MA) = 3E) (3.29) 
have 
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which has a solution 
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i Y  7 wl;) = 3-1/2~(1) 11,Y p) 02 +3-1/2~(1)* 11.Y p) 20 +- Al1(T)+21/3A;,m 
4 4 3  

(2(T,- T)A’,,(T,)+(T,- T)2A;l(T,))eiY(To-T)/2dT 0 

(3.30) 
where the kernels L.13,‘ are given in the Appendix. We can also calculate V:), from the 
above and, in addition, we must calculate some of the exp [ia(3x/2 + d3z/2)] terms. 
From the z-momentum equation, we have 

wA:T+$iYwA) = i d 3  w:) w!)-Al1 H$y-iiUg) w;)- v’,”d wil:,y, (3.31) 
which has a solution 

w:) = vg w;;y 

- fi IT (T, - T,) Az0( T,) All( T,) eiY(To+2T1-3T)/2 d T 0 1  d T 
8 -m -a 

with the kernel given in the Appendix. We also find that 
3’ yv(3) which has a solution U(a3:.YT+Z1 31,Y = ’g), 

3 
16 -m -m 

q;!y = --IT s” (T,- T)(T,- T,)A20(T,)A,1(T,)e1Y(Tof2T~-3T)/2dT 0 1  dT 

(3.32) 

(3.33) 
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The kernels in (3.34) are given in the Appendix. 
For the exp(iax) terms, we need only calculate Vi), which satisfies 

qi, Y T  + i V;), = iu, YV!), + 4iu1 qi qi), 
- 2 4 ,  qj, y y  + 201, All wi, y y  - 2C12,' q:), y y  - 4i - (pi v',':), (3.3 5 )  

a 
ay 

which has a solution 

- 2 r  Jl' -3T2+ 3Tq- T:+ 3TT, - T, q - T: 
4 --co -a T,+T,-2T 

x C~)(T,)A,l(T,)e'Y(To+Ti-2T)iedT 0 1  d T  

(3.36) 

3.4. o(e4I3) terms 
It is at this order that we shall evaluate the jump in the plane wave. From the outer 
expansion, we know that 

(3.37) 

We find that U;) satisfies 

G;), YT + i YUG), + iA;, -A2o Y = g$j, (3.38) 

where 9$ is given in the Appendix and after extensive integration by parts, we find 
that (3.38) has a solution which can be written in the form 

%)++iAz0 Y = Q)+ ~ ) ( 2 ~ ) , y y - - ( ~ ) z ) )  a3  

a r  

x All(G) All(T,) A,,(TJ A:,(&) eiY(-To+Ti+Te+Ta-2T)12 d T  0 1 2 3 3  d T  d T  d T  
(3.39) 

where the kernels are given in the Appendix. 
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The quantity @: consists of terms which do not contribute to the jump across the 
critical layer, and the remaining terms on the first line of (3.39) are separated from the 
remainder of the expression because, as was the case with the O(e) terms, this greatly 
simplifies the evaluation of the jump in (u(,4d+iAz0 Y) across the critical layer. This 
jump is 
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(U&+iAP0)dY = 4 i n 4 ,  
J -a 

and hence the equation for the plane wave is 

Thus, we have two coupled nonlinear integro-differential equations (3.28) and (3.41) 
governing the evolution of A,, and All.. It should be noted that for the tanhy mixing 
layer studied here, the constants multiplying the quadratic term in (3.28) and the 
quartic term in (3.41) are imaginary and the constants multiplying the cubic term in 
(3.28) and the cubic terms in (3.41) are real. By contrast, for the adverse-pressure- 
gradient boundary layer (Goldstein & Lee 1992), the corresponding coefficients are all 
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imaginary, which Goldstein & Lee attribute to the fact that they studied the long-wave 
limit, and for the Stokes layer (Wu 1992) they are all complex. Numerical results 
obtained from the solution of the amplitude equations for various values of the 
relevant parameters are discussed in considerable detail in $5 of Goldstein & Lee. 
Somewhat surprisingly, the qualitative behaviour of the solutions does not depend on 
the coefficients being real, as shown by the additional computations of Wu. 

As previously observed by Goldstein & Lee (1992) and Wu (1992), the solutions to 
these two equations develop a singularity and blow up at some finite time, say T,. It  was 
shown that near to this singularity, the solutions have the asymptotic forms 

A,, - b2, / (T-  T)4f2i$ and A,, - b,,/(T,- T)3+i@, (3.42) 

where $ is a real constant and b,, and b,, are complex; +, ~b , ,~ ,  Ib,,J and a relationship 
between the arguments of b,, and b,, can be obtained by substituting this asymptotic 
form into (3.28) and (3.41). Although Wu links this singularity to the appearance of 
turbulent bursts in experiments on Stokes layers, it seems most likely that its 
sigmficance in our case is, rather, a breakdown in the theory signalling a more 
nonlinear stage governed by the Euler equations, as suggested by Goldstein & Lee. The 
singularity may also be associated in the case of the mixing layer with the rapid 
thickening observed to occur near the sites of vortex pairing. The addition of viscous 
effects to the theory would no doubt modify this behaviow, but the present result is 
still meaningful at moderate Reynolds numbers according to the investigation by Wu, 
Lee & Cowley (1993) of the case where only the oblique waves are present. 

4. Concluding remarks 
In the preceding sections, coupled amplitude evolution equations were derived 

describing the interaction of a triad of modes comprising a plane fundamental and a 
pair of oblique subharmonics that in the linear neutral limit satisfy exactly the 
conditions for triad resonance. Principal differences between our approach and 
previous analyses of plane mixing layers reviewed in Q 1 are that (i) we do not regard 
the subharmonic as a small perturbation of a spatially periodic flow, i.e. it is not treated 
as a secondary instability as in Kelly (1967) or Pierrehumbert & Widnall(l982); and 
(ii) we do not restrict the shorter (fundamental) wave to be neutral. In fact, it is 
essential that all modes be slightly non-neutral on a linear basis because of our 
utilization of a non-equilibrium critical layer. 

To appreciate the significance of the latter point, note that it is only with such a 
critical layer that the coefficient of the back-reaction term vanishes in (1.2), the plane 
wave evolution equation for t < O($/'). This means that the parametric resonance 
observed in the experiments of Corke & Kusek (1993) can occur even when the 
amplitude of the oblique waves grows to become comparable with that of the plane 
wave. By contrast, the approximation to the usual triad equations discussed by these 
authors is valid only so long as A,, 4 A,,. It is therefore now clear that in order to 
predict some important aspects of free-shear-layer transition (or to relate observation 
with theory) it is necessary to specify the critical-layer regime (i.e. viscous, nonlinear, 
wave packet, non-equilibrium or some combination thereof). On the other hand, the 
analyses of Monkewitz (1988) and those cited in the preceding paragraph completely 
neglect critical-layer effects, yet still are capable of describing the onset of certain 
phenomena. This is partly because critical layers are not significant while instabilities 
are evolving rapidly; they become important subsequently owing to nonlinear 
saturation and to the spreading of the shear layer which causes the wave number of the 
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initially most amplified disturbance to tend, on a non-dimensional basis, toward the 
neutral value. 

Our own analysis, of course, also has several limitations. Being inviscid, it assumes 
relatively large Reynolds numbers and, in addition, the initial amplitudes of the 
oblique waves are assumed to be of the same order of magnitude as the plane wave. 
When these conditions are satisfied, the amplitude equations (3.28) and (3.41) describe 
three successive stages of the transition process. These are linear instability, parametric 
resonance for - O(S- ' /~)  and, finally, a fully coupled stage when t - O(C-''~). In the 
spatial case discussed below, the same scalings apply with t replaced by x. During the 
fully coupled stage, our analysis produces streamwise vortices. Hence, the experimental 
observation of such vortices can be explained by resonant interaction theory as an 
alternative to the translative instability mechanism proposed by Pierrehumbert & 
Widnall (1982). 

Clearly, our results are not in accord with the scenario described in the opening 
paragraph of 81  in which three-dimensional effects do not arise until after the plane 
modes produced by the inflexional instability have reached equilibrium. (We 
deliberately avoid using the term ' Kelvin-Helmholtz instability' which properly refers 
to a quite different mechanism describing the instability of a vortex sheet between two 
streams of different density.) Experimentalists, as discussed in 6 1, have already shown 
that the forcing of oblique waves can radically alter this sequence of events. Often, the 
initial conditions in these experiments were not close enough to those in our theoretical 
model to permit detailed comparisons. However, the most recent experiments reported 
by Nygaard & Glezer (1994) involve pairs of oblique waves inclined to the mean flow 
that are of comparable amplitude to the plane wave and so it should be possible to 
relate their observations to our model. The schlieren photographs in figure 17, for 
example, correspond to a disturbance configuration similar to our own, but the 
obliqueness angle is much smaller than 60". Although the qualitative behaviour in 
these experimental observations seems to agree in several respects with our theory, 
there are, unfortunately, no data presented for growth rates. 

At several points in Nygaard & Glezer (1994), the apparent existence of a cutoff 
spanwise wavenumber for forced oblique waves is noted. Usually this corresponds to 
an angle of about 45" which is said to agree reasonably well with the result for the 
helical pairing instability investigated by Pierrehumbert & Widnall. The actual value 
depends on a parameter denoted p in the Stuart vortex model and the result for p = 
0.25, for example, is equivalent to an angle of 65". This is quite close to the 60" value 
which yields exact triad resonance in our own analysis. An important difference, 
however, is that the maximum amplification rate in their model occurs for a plane-wave 
subharmonic, whereas our results favour oblique waves. It would be of interest to 
calculate the obliqueness angle at which the growth rate predicted by (3.28), modified 
for detuning, is a maximum for a particular set of experimental data. The result is not 
obvious because of competing effects; as the obliqueness angle is decreased, the linear 
amplification rises, but the resonance effect is diminished by detuning. 

Also of interest are the direct numerical simulations of Shoppe et al. (1994) because, 
as noted in our previous article (Mallier & Maslowe 1994), numerical studies reported 
up to the time when that article was written viewed the oblique modes as secondary 
instabilities and, therefore, the latter were not of sufficient amplitude to permit 
comparison with the present analysis. Shoppe et al., however, do have some results for 
a case with a disturbance configuration similar to that considered herein, with the 
oblique waves inclined at +45" to the mean flow. They have examined the effect of 
increasing the energy in the oblique waves, comparing small values with a case where 
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energy in the oblique waves is 50% of that in the plane-wave fundamental mode. A 
very rapid amplification of the oblique waves was observed, as well as a substantial 
thickening of the shear layer. Although our analysis can easily be modified to account 
for the inclination of the oblique waves being 45" instead of 60°, we do not incorporate 
a variable shear-layer thickness. Perhaps this feature can be implemented in a future 
model. In any case, the agreement with regard to amplification of the oblique waves is 
encouraging. 

Returning now to the case where three-dimensional effects do not become significant 
until after the pairing of spanwise vortices has occurred, a resonant triad analysis may 
still be appropriate. If E is an amplitude parameter characteristic of the plane wave and 
6 is the amplitude of the oblique waves, then the condition 6 4 e3 ensures that the plane 
wave saturates before the onset of a stage where the modes are fully coupled. The 
evolution of a plane wave from the exponential amplification to nonlinear saturation 
can be described accurately using a non-equilibrium nonlinear critical layer as was 
shown convincingly by Hultgren (1992). Outside the critical layer, his analysis is linear 
and includes weak non-parallelism. Hultgren's solution could be expanded to 
incorporate a pair of oblique waves which grow parametrically in the sense that the 
plane wave is unaffected by their presence until after equilibrium. An analysis of the 
adverse-pressure-gradient boundary layer along these lines was given recently by 
Wundrow, Hultgren & Goldstein (1994) and a similar development for free shear 
layers would probably best describe experiments with two-dimensional forcing. 

A description based on spatial rather than temporal evolution is, of course, usually 
most appropriate for comparison with experiments on free shear layers. As discussed 
in the appendix of Kelly (1967), the constant u, in the velocity profile (2.1) must be 
greater than zero in order to have spatial instability. Only minor modifications are 
required to adapt our amplitude equations to the spatial case. In a frame of reference 
moving with the real phase speed (assuming it is the same for both the plane and 
oblique waves), the form of the evolution equations would be unchanged. The 
independent variable would be X = el% instead of T and, in addition, the constants 
appearing in front of the nonlinear terms, as well as those multiplying A,, and A,,, 
would now be complex. This can be seen easily by recalling that the evolution 
equation for a wave packet is of the form 

aA aA - + c - = y A  +nonlinear terms, 
aT *ax 

where cg is the group velocity (see e.g. Benney & Maslowe 1975 or Huerre 1987). Using 
the plane wave as an illustration, it is known that cg = (1 -2i/n) when u, = 1. 
Consequently, converting (3.41) to an equation for dA,,/dX involves multiplication of 
all other terms by the complex constant c;'. As noted near the end of $3,  this does not 
change the qualitative behaviour of solutions to the amplitude equations. 

Let us now discuss briefly the question raised in $ 1 of dispersive effects in the spatial 
case. Whereas c, = u, for all unstable as well as neutral modes in the temporal 
problem, numerical solutions of Rayleigh's equation show that c, varies with a, when 
there is spatial growth and that Ic,-u,l is greatest when a,+O. However, it was 
observed earlier in this section that the growth of the shear-layer thickness displaces the 
effective dimensionless wavenumber (and frequency) toward larger values where 
dispersion is less pronounced. This is probably why temporal numerical simulations 
appear to provide a satisfactory description of experimental events despite some 
important differences in the linear theory of spatial and temporal modes. 

Finally, we consider briefly the effects of a departure of the inclination of the oblique 



118 R. Mallier and S. A. Maslowe 

waves from the 60" angle at which exact resonance occurs. Again writing a = 1 - ~ ' / ~ a , ,  
as in (1. l), but now expanding the spanwise wavenumber and phase speed as 

/3 = + 4 3  (1 - ~'/~/3,) and c = 1 - E' /~c ,  (5.2) 

allows us to treat the off-resonance case with spatial evolution. The crucial point is that 
for the interaction to be most effective the system of waves should propagate 
downstream with all components moving at the same speed. This ensures, also, that 
they share a common critical layer. It turns out that the condition for this to be so is 
that 

P1 = 5al, (5.3) 

in which case c, = 4a1/n2. (5.4) 

Even when 1 -a is not particularly small, numerical solutions of Rayleigh's equation 
reveal that an obliqueness angle can generally be found such that all components of the 
triad have the same phase speed and the resonance mechanism will, as a result, still be 
active. 
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The kernels for $ 3  are given b y  

+ 4T: + 27T2T, 

+3T,  T2,+6Ti, 

gy’  = - 18T3 + 6TTi-8Ti+27T2T,- 6TT, T, i- 8Ti T,- 12TT:- 7T, q 

-6TT,T,+lOTiT,-24TT,T,+4T,T,T,+7TfT,-12TTi-9T,Ti 

g;b’ = - 18 T3 + 18 T’T, - 6TTi + 4Ti + 9T2T, - 6TT, q - 1 1 T i  T, + 16% Tt 

- 12T;+21T2T, 
- 18TT, T,+ 5Ti T,- 12TT, T,-4T, q T,+20T: T,- 12TTi+6T, T i  
-12q  Ti+6T:, 

K‘z’ = -18T3+ 18T2T,-6TTi+4Ti+ 18T2T,-12TT,T,+5Ti T,-6TTt 

+8T,T;+4T: 

+18T2T,-12TT, &-1lTiT,-12TT, T,-14T,T, T,-14T:T,-6TTi 

+24T, T,2+27T, T i -  15T& 

L:?’ = -24TT,+4Ti+12TT,+13T,T,-gT:+12TT,+3T,T,-9T,T,--Ti, 

Li:b’ = 9 TT, - 4Ti - 2 1 TT, + 5 T, T, i- 8 Tt  i- 12TT, - 6T, T, - 3 T i ,  
L\y’ = 9TT,-4Ti+9TT,-6T, T,+4T:-18TT,+5T, T,-IlT, T,+12Ti, 

K‘:’ = 27T2 - 6TT, -4TE- 18TT, i- 12T, T,  +4T:- 30TT, + 2T, T,  -2T, T,  + 15Ti, 

Le’ = 9T3-69T2T,+54TTi- 12Ti-9T2T,+28TT, T,- 12TE T,+ IOTT; 

-4T, T?-4T:, 

L$;b’ = 51T2T,+2TT,T,-6TtT,-30TT, T,+4T,T, T,+6T:T,-37TTi+3T, T i  

+7T, T2,+9Ti. 

#A’ = (-818-k 15T2T,- 10TT:+2Ti+9T2T,- IOTT, T,+4TE q - 4 T q - k  T, Tt 

+ Tf>/<T, + T,  - w, 
fig’ = (T,-T,)(T,-K)(-T,+2T,-T,), 
K‘Ab’ = - 54T4- 30T3T,-9TTi+ 82T3T, + 30T2T,T,+9TTi T,+ T i  T,-60TaT; 

-29TT, T:-4Ti Tf+2lTT:+9T, Tf-4T:+82T3T,+30T2T, T,+9TTi T, 
+T~T,-178T2T,T,-10TT,T,T,-10T~T,T,+34TT~T, 
+21T,T~T,-13T~& 

-60T2T,2-29TT,Ti-4T,2Ti+34TT, Ti+21T,T, Ti-16TtTi 

+ 27TTi i- 9T,  T i  

-13T, T~-4TQ,+82T3T,+30T2T,T,+9TTiT,+7TiT,-78T2T, T, 
- 10TT, T,  T, 
+6Ti T,  T,+34TT: T,- 1 I T ,  T i  T,-7Tf T,-78T2T, T,- 10TT, T,  T, 
+6Ti T, T, 
+30TT, T,  T,-54T, q T,  %+ 16Tf T,  T,+34TTi T,- 11 T, T i  T, 
i- 16T, Ti &-IT: T, 
-60T2T:-29TT, Tt-21Ti T:+ 34TT, T:+ 37T, T,  Ti-9Tt T:+ 34TT, T i  

+31T, T, Ti-20T, T,  Ti-9Ti T:+27TTi- T, Ti-  11 Ti -  11 T, T i -  T:. 
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